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Abstract. Statistical models are presented to describe the evolution of the surface roughness of polishing pads
during the pad-conditioning process in chemical-mechanical polishing. The models describe the evolution of the
surface-height probability-density function of solid pads during fixed height or fixed cut-rate conditioning. An
integral equation is derived for the effect of conditioning on a foamed pad in terms of a model for a solid pad. The
models that combine wear and conditioning are then discussed for both solid and foamed pads. Models include
the dependence of the surface roughness on the shape and density of the cutting tips used in the conditioner and
on other operating parameters. Good agreement is found between the model, Monte Carlo simulations and with
experimental data.
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1. Introduction

Chemical-mechanical polishing (CMP) is a procedure for reducing height variations in ma-
terial layers that have been deposited on silicon-wafer surfaces. Planarization considerably
simplifies the task of building multilayer integrated-circuit structures while staying within
the depth-of-focus limitations of photolithography tools. First applied to microelectronics by
IBM in the early 1980s, CMP is now one of the fastest growing and most essential processing
techniques in the electronics industry. In this article, we will introduce and investigate a model
for a little-studied but important component of a CMP tool that is used to maintain process
stability and uniformity.

In one large class of single-wafer CMP tools, the silicon wafer being processed is pressed
against a rotating polishing pad; see Figure 1. During polishing, a chemically-reactive slurry
containing abrasive particles is delivered on the pad ahead of the wafer. Pad-surface asperities
that are tall enough to touch the wafer trap abrasive particles and drag them across the surface.
This abrasive action, combined with chemical properties of the slurry, is responsible for the
removal of material from the surface of the wafer. The same abrasive action, however, also
produces wear and degradation of the polishing-pad surface. Our focus here is the model-
ling of the process used to maintain the surface of the pad. In the conditioning process, a
diamond-embedded rotating disk is swept back and forth radially across the pad either during
polishing (in situ conditioning) or between wafers (ex situ conditioning). The diamonds create
microscopic cuts or furrows on the pad surface that continually uncover new pad material and
maintain roughness.
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Figure 1. (Left) Schematic of a typical single-wafer rotary CMP tool. (Right) Scanning Electron Micrograph
cross-section of a used, conditioned void-filled polyurethane polishing pad. Surface asperities can be seen at the
top of the image. The scale bar at the top center is 100 microns (0·1 mm) long. Voids average about 30 microns in
diameter and occupy about 60% of a planar cross-section.(Data by Letitia Malina, Motorola)

Figure 2. Surface height PDFs from a newly conditioned pad (left) and for the same pad after polishing wafers
for 31 minutes without conditioning. (right) [1]. The surface heights are given relative to the mean. The left side
of each distribution is determined by the pad void structure while the right side is influenced by conditioning and
wear. The secondary peak in the right-hand PDF indicates that many high asperities have been abraded away and
the surface has become more planar.

The details of the pad-surface roughness depend partly on the pad structure and partly on
wear and conditioning. Polishing pads typically consist of relatively soft materials such as
polyurethane. They are 1–2 mm thick and may be half a meter or more in diameter. Variations
in the pad-surface height relative to the mean are on the order of tens of microns and their
distribution is not generally Gaussian. The distribution of heights above the mean is controlled
by pad conditioning and surface-wear processes. If the pad is manufactured from a foam,
the form of the distribution far below the mean is determined by the void structure of the
pad material. The physical structure of a foamed pad can be locally very non-uniform. A
magnified cross-section of a common type of closed cell, void-filled polyurethane polishing
pad is shown in Figure 1. The voids in this pad average 30 microns in diameter. In a planar
cross-section, they occupy about 60% of the total area. The surface-height probability-density
function (PDF) can be measured by optical interferometry. A typical measured PDF is shown
in Figure 2 [1].

In the absence of conditioning, asperities that periodically come into contact with the
wafer as the pad rotates are abraded by the slurry particles. This results in the formation
of a secondary peak in the right-hand tail of the PDF that moves toward the primary peak and
grows with time (Figure 2) [1]. The appearance of the secondary peak is associated with a
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decline in the average polish rate. One explanation for this is that surface wear increases the
actual contact area, thereby lowering the average real pressure at a fixed load. The reduction
in the real contact pressure is then responsible for the decline in the polish rate.

In [2], it was shown that the evolution of the surface height PDF φ(z, t) due to slurry
abrasion can be modeled by a Hamilton-Jacobi-like conservation equation,

∂φ

∂t
= 4caE

∗√κs

3π

∂

∂z

(
H(z − d(t))

√
z − d(t) φ

)
, (1.1)

where H is the Heaviside step function, z = d(t) is the vertical position of the wafer being
polished, E∗ is the pad Young’s modulus divided by one minus the square of the Poisson ratio
and κs is the mean asperity tip curvature. The parameter ca is a wear coefficient that depends
on the slurry characteristics and is proportional to the sliding speed between the pad and the
wafer as described below. This equation produces a change in the PDF φ due to abrasion of
asperities having height z > d under the wafer. The variable t in (1.1) may be thought of as
measuring the cumulative wear time. In Appendix A we derive modifications needed to this
equation in order to combine it with the present theory.

Equation (1.1) applies to solid (void-free) pads for any amount of wear and to foamed pads
if the wear effects are limited to a thin layer, on the order of the void length scale. In [2],
Equation (1.1) was derived by assuming that the rate of decrease of asperity height is propor-
tional to the product of the sliding speed and asperity tip contact pressure and by applying
a conservation-law argument to balance the rate at which asperity heights enter an interval
(z, z + �z)) with the rate at which wear reduces the heights below z. When Equation (1.1) is
considered in the (illustrative but unrealistic) case where the polishing surface stays at a fixed
height above the initial surface of a solid pad, then it can be solved exactly using the method
of characteristics,
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z > d, (1.2)

where φ0(z) is the surface height PDF at the beginning of the wear process and W = 4caE
∗√

κs/(3π). This solution develops an integrable singularity at z = d representing the portion
of the pad-surface that has been worn smooth by the wafer. After a sufficiently long but finite
time, this singularity converges to a δ-distribution with its amplitude approaching a limiting
value given by the fraction of the pad-surface originally protruding above the wafer height d,∫ ∞
d

φ0(z) dz. In the more realistic case, when the vertical position of the wafer decreases with
time as a result of load balance, the secondary peak may or may not involve a singularity (See
Figure 14). It is known experimentally that, if conditioning is then resumed on a worn pad,
the secondary peak in Figure 2b moves to the right, decreases in magnitude, and disappears.
We will later solve the modified version of (1.1) numerically in this case and compare it with
the data in Figure 2b (See Figure 15b). One objective of this paper is to extend the ideas in [2]
to explain this behavior by accounting for not only wear due to polishing but also to consider
simultaneously the conditioning process.

To make progress on the mathematical modeling of the conditioning process, we will
employ several simplifying assumptions. First, we explain some of the nuances in the ap-
plication of Equation (1.1) that are related to the actual details of the geometry in Figure 1
and derive a simpler time-averaged version of this equation. See Appendix A for the detailed
analysis. Second, under appropriate conditions on the relative rotation rates of the pad and
the conditioner, it is shown in Appendix B that the sweeping motion of a circular conditioner
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yields a uniform density of furrows cut over a large portion of the polishing pad. This analysis
is used to replace the circular conditioner by a simpler one-dimensional “bar conditioner”
used in our mathematical model. The diamonds on the bar conditioner are assumed to cre-
ate furrows in the pad by cleanly cutting the pad material. This makes it possible to avoid
inclusion of a mechanical theory to describe furrow formation by a combination of plastic
deformation (in which material is simply pushed aside) and cutting as described, for example,
in [3] or [4]. Given these simplifications, we use the bar conditioner to develop a model for
surface-roughness development on solid pads for fixed height conditioning and for constant
cut-rate conditioning. A key relation involving the intrinsic roughness of a foamed pad is
then introduced that allows us to extend the solid-pad-conditioning models to foamed pads.
Finally, we develop a model that combines wear and conditioning on solid pads and discuss
the corresponding model for foamed pads. The latter extends Equation (1.1) so that it applies
for any amount of wear of a foamed pad.

2. The basic conditioning problem

We consider a two-dimensional radial cross-section of the pad that encounters the equivalent
conditioner once per pad rotation. The cutting surface of this tool has an array of identical
diamond tips, which for simplicity will be assumed to be triangular with opening angle α,
with mean separation distance � given by Equation (B3); see Figure 3. The theory can be
easily generalized to cutting tips with more general shapes. While in a real conditioner the
diamond tips protrude a finite distance, we will assume that the protrusion is large enough that
we can neglect the presence of the conditioner plate. Compared to the length scales for the
conditioning process set by the diamond tips, the pad dimensions are very large, so the pad
will be assumed to be semi-infinite in the vertical direction. The lateral direction is divided into
intervals of length �, each containing one diamond tip situated at a uniform random location
within its interval during each cut. In our model, the conditioning process will be statistically
homogenous along the radial direction so that the statistical structure of the pad does not
depend on the radial position.

We start by modeling conditioning without wafer wear, the ex situ case. The goal is to
describe the evolution of the surface of the polishing pad in which the circular conditioner has
been replaced by the equivalent one-dimensional “bar” conditioner (see Appendix B). The
key simplifying assumption is that, given the position of the conditioner, the ability of any
diamond to cut the pad material is not dependent on the shape of the pad-surface it encounters.
Pad material that has been cut away is assumed to then be washed away by the slurry rather
than being redeposited elsewhere.

We introduce a coordinate system based on the initial state of the pad. We use x to describe
the horizontal distance from a fixed point on the pad radial cross-section. Vertical positions
will be measured relative to the initial position of the pad-surface, z = 0. For solid pads, the
initial pad-surface will be assumed to be smooth. For pads made from “foamed” materials, it
will be assumed that a horizontal planar cut has been made at z = 0 and that the portion of the
pad above z = 0 has all been removed. When plotting distributions it is common engineering
practice to plot surface-height measurements relative to the average height as in Figure 2. For
the purposes of the subsequent analysis, however, it is more useful to define the distributions
relative to the z-coordinate defined here, which is fixed in the laboratory reference frame.
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Figure 3. The coordinate system and terminology used in the paper. A cutting tip on the conditioner face is shown
displaced horizontally by a random amount X and vertically by h(t).

The profile of each of the diamond cutting tips will thus be represented by the function

V (x) = ν|x|, −�/2 < x < �/2, (2.1)

where ν = cot(α/2). We will assume that variations in the pad-surface are always smaller
than ν�/2, so that the conditioner only cuts part of the surface on any pass. In our analysis, we
will make use of the width

w(z) = 2z/ν, z ≥ 0. (2.2)

of the cutting tip at a vertical distance z above its apex.
The vertical position of a solid pad-surface can be expressed as a single-valued function

z = s(x, t); we will generalize our model to foamed pads later in Section 5. We model the
evolution of a small fixed region on the pad cross-section as it interacts with the conditioner
on successive rotations of the pad. If the rotation rate of the platen is 
 radians/sec, these
encounters occur at discrete times tn, where

tn = 2πn/
. (2.3)

We describe conditioning as a discrete random process in which the surface of the pad is
modified as a result of each encounter with the conditioner, s(x, tn) → s(x, tn+1). Hence,
within any interval associated to a single diamond cutter (say the interval [0, �]), a single pass
of the conditioner results in the transformation

s(x, tn+1) = min ( s(x, tn), V (x − Xn) + h(tn) ) , (2.4)

where h(tn) gives the vertical position for the cutting tip and Xn is a uniformly-distributed
random variable on [0, �] that gives the horizontal position of the tip on the nth pass of
the conditioner. In order for our model to respect the statistical homogeneity of the true
conditioning process (and not behave differently near the edges of the interval [0, �]), we
interpret (2.4) with periodic boundary conditions so that a diamond cutter centered near the
right edge of the interval will also cut a bit near the left edge of the same interval (rather than
the adjacent interval belonging to the next diamond cutter). A Monte Carlo model similar to
the one employed here is described in [5]; however, we go beyond [5] by also developing
analytic models that are specific to the pad conditioning problem.
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We assume that the vertical position of the conditioner, as measured by the position of
the cutting tips, z = h(t), is a prescribed function of time that is specified as part of the
conditioning process. We will consider two simple cases for positioning the conditioner: (i)
when h(t) = h0 is a constant height, and (ii) when the height h(t) decreases at the cut rate c.
In these simplified cases, the assumption that h(t) is not influenced by pad asperities allows
us to consider the steps in (2.4) to be independent.

We will describe the structure of the surface in terms of the function q(z, t), defined as the
fraction of the surface which remains above height z after time t . More precisely, we think here
of sampling the surface structure over a radial interval of length L, and defining q(z, t) as the
measure of the set of x values in this interval for which z > s(x, t), divided by L. We expect
universal behavior for q(z, t) (no dependence on L nor significant variations from experiment
to experiment) when L is chosen large enough to contain sufficiently many independent cuts
so as to adequately sample the statistics of the spatial structure. All of our model calculations
will make predictions for the universal statistics of the spatial structure, which will be relevant
for L � � (with L < rp) at all times or for L = � after enough time so that each interval of
this length contains many (independent) cuts (see Appendix B).

Because the cutting process is statistically homogenous along the radial direction, we can
equivalently write

q(z, t) = Prob(z < s(x, t)) (2.5)

for any choice of horizontal position x, where the probability refers to the randomness in the
cutting process. It is also useful to characterize the surface in terms of the probability that the
height of a point on the surface does not exceed z,

p(z, t) = Prob(z ≥ s(x, t)) = 1 − q(z, t), (2.6)

and the function

φ(z, t) = ∂p(z, t)

∂z
= −∂q(z, t)

∂z
. (2.7)

The function p(z, t) is the cumulative density function (CDF) for surface height, q(z, t) is
the complementary cumulative density function (CCDF), and φ(z, t) is the surface-height
probability-density function (PDF).

To describe the progress of the conditioning process, we will track the average surface
height over a sample radial interval of length L:

s̄(tn) = 1

L

∫ L

0
s(x, tn) dx =

∫ 0

h(tn)

zφ(z, tn) dz, (2.8)

and the RMS (root-mean-square) roughness, as measured by the standard deviation, σ (tn),

σ 2(tn) = 1

L

∫ L

0
[s(x, tn) − s̄(tn)]2 dx =

∫ 0

h(tn)

[z − s̄(tn)]2φ(z, tn) dz. (2.9)

3. A fixed-height conditioner on a solid pad

To start the analysis of the model, consider the simplest case where the conditioner is main-
tained at a constant height, h(t) = h0 (where h0 < 0), and the pad is solid. A typical sequence
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Figure 4. A typical sequence of solid pad-surface profiles after successive steps of the discrete conditioning
process (2.4), for n = 1, 2, 3, and n = 50 with an initially flat pad-surface.

Figure 5. Pad surface height distributions generated by (2.4) corresponding to the sequence shown in Figure 4.

of pad-surfaces generated by (2.4) was calculated using a Monte Carlo simulation; see Fig-
ure 4. In this figure, the pad-surface was initially smooth, z = s(x, 0) = 0, corresponding
to a surface distribution φ(z, 0) = δ(z). The surface-height distribution φ(z, tn) for a single
experiment over a sampling interval L = � at corresponding steps is shown in Figure 5. We
observe that the conditioning process gradually converts the initial smooth surface to another
nearly worn-smooth surface at z = h0 with a truncated PDF on h0 ≤ z ≤ 0. Figure 5 shows the
amplitude of the δ-distribution corresponding to the initially smooth surface (z = 0) gradually
decreases as the distribution of the surface shifts toward z = h0. A plot of the roughness
integral (2.9) confirms that the roughness initially grows quickly, but decreases for long times;
see Figure 7.

The surface-height distribution for this example is not universal over the sampling interval
L = � for small n, and will look somewhat different from experiment to experiment. However,
for even moderately large n, the spatial statistics over the interval L = � are well described
by the universal formulas for the conditioning process which we now develop.

It is possible to study this process analytically by considering the shape of the pad-surface
at each step and then accounting for all possible scenarios for the positions where the suc-
cessive steps occur. However, this is algebraically tedious and impractical after a few steps.
Therefore we consider a different approach.

The central idea is to consider the probability q(z, tn) that after n cuts, the surface height
at a given point x remains above a certain level z. Before the first cut, we assume the pad
is uniform for all z ≤ 0 with s(x, 0) = 0, so q(z, 0) = H(−z). At later times, q(z, t) will
only be modified for vertical positions h0 ≤ z ≤ 0 cut by the conditioner, and we focus
on this range of values for the moment. At each successive step, the surface height will be
cut if and only if the center of the horizontal position of the cutting tip falls within a distance
1
2w(z−h0) = (z−h0)/ν of the given point x (taking periodic boundary conditions). This event
happens with probability w(z−h0)/� = 2(z−h0)/(ν�). We consider only the case where the
conditioner scrapes a very small part of the surface per revolution, so that the nondimensional
parameter

λ = 2h0

ν�
, (λ ≤ 0) (3.1)

satisfies |λ| � 1.
The location of successive cuts is independent of all previous events. Consequently, the

probability of survival of the surface at position x above a height z can after n cuts be modeled
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Figure 6. (left) Development of the CCDF q(z, t) (3.8) corresponding to the simulation in Figure 4 for
n = 10, 20, ...50, 100, 200, ..., 500, 1000, 2000, ...5000. (right) Comparison of the PDF produced by the Monte
Carlo simulation for ν = 0·5, � = 1, h0 = −0.01 at n = 2000, with the long-time asymptotic PDF (3.6).

as the probability of n identically, independently distributed failures for the cutting tip to come
close enough to x. Generalizing our result to apply also for arbitrary z, we therefore achieve
the formula

q(z, tn) = H(−z)

(
1 − 1

�
w(z − h0)H(z − h0)

)n

. (3.2)

It then follows that the cumulative distribution function is

p(z, tn) = 1 − H(−z)

(
1 − 2

ν�
(z − h0)H(z − h0)

)n

, (3.3)

where we have used (2.2) for w(z−h0). By differentiating p(z, tn) with respect to z, we obtain
the PDF,

φ(z, tn) = H(−z)H(z − h0)

(
1 − 2

ν�
(z − h0)

)n−1 [
2n

ν�
+

(
1 + 2h0

ν�

)
δ(z)

]
. (3.4)

After many steps in the process (2.4), the influence of the initial condition, φ(z, 0) = δ(z),
becomes negligible (Fig. 5a,b,c) and the long-time PDF can be approximated by

φ(z, tn) = 2n

ν�

(
1 − 2

ν�
(z − h0)

)n−1

+ O(n−1), h0 ≤ z ≤ 0, n → ∞, (3.5)

see Figure 5d. Since the conditioner is assumed to cut once per pad revolution and the pad
revolves at a rate 
 we can interpret this for continuous times as

φ(z, t) ∼ 
t

πν�
exp

[



2π
log

(
1 − 2

ν�
(z − h0)

)
t

]
, t → ∞. (3.6)

We can simplify this expression further using the assumption |λ| � 1 to yield an exponential
distribution in z for h0 ≤ z ≤ 0,

φ(z, t) ∼ 
t

πν�
exp

[
− 


πν�
(z − h0) t

]
, t → ∞. (3.7)

In Figure 6a we show the evolution of the complementary cumulative density function (CCDF)
q(z, t), defined by

q(z, t) = 1 −
∫ z

h0

φ(z′, t) dz′. (3.8)
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Figure 7. The average surface height (2.8) and RMS surface roughness (2.9) for the conditioning process in
Figure 4. Initially, the roughness increases rapidly, but for long times, the roughness decreases as the amplitude
scale of surface variations decrease. The dots shows the direct results of a Monte-Carlo simulation of (2.4),
calculated using the spatial integrals in (2.8, 2.9). The almost indistinguishable solid curves are the calculated
expected values from the probabilistic model (3.4).

for the sequence of conditioning steps considered in Figure 4. This shows how the distribution
with the step due to the initial smooth surface transforms to become a step describing a new
smooth surface. We note that the CCDF can be interpreted as the density of the remaining pad
material at a given height z at time t .

While the expression (3.4) is more complicated than the limiting distribution (3.7), it has
significant value since it describes the conditioning process at all times. From (2.8), we can
use (3.4) to obtain the average surface height as,

s̄(tn) = 2n

ν�

∫ 0

h0

z

(
1 − 2

ν�
[z − h0]

)n−1

dz. (3.9)

It is convenient to non-dimensionalize this expression in terms of the parameter λ from (3.1):

s̄(tn) = nh0λ

∫ 0

1
y(1 − λ[y − 1])n−1 dy = h0

(n + 1)λ

(
(n + 1)λ + 1 − (1 + λ)n+1) . (3.10)

For |λ| � 1, this expression may be simplified to

s̄(tn) = h0

nλ
(1 + nλ − enλ)(1 + O(|λ|1/2)), (3.11)

which is uniformly accurate for all n. Hence in the following limiting cases the average surface
height is given by

s̄(tn) ∼
{− 1

2h0λn, n � 1/|λ|,
h0 + h0/(λn), n � 1/|λ|. (3.12)

For short times, the surface height decreases linearly; for long times, it converges to the cutting
height z = h0. (See Figure 7a).

Similarly, we can obtain the RMS roughness as

σ 2(tn) = s̄2 (1 + λ)n + nh2
0λ

∫ 0

1

[
y − s̄

h0

]2

(1 − λ[y − 1])n−1 dy, (3.13)

with the following uniformly valid approximation for small |λ|:

σ 2(tn) = h2
0

λ2n2

(
1 + 2nλenλ − e2nλ

)
(1 + O(|λ|1/2)). (3.14)
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In the limiting cases, we find

σ 2(tn) ∼
{− 1

3h2
0λn, n � 1/|λ|,

h2
0/(λn)2, n � 1/|λ|. (3.15)

Hence for short times the surface roughness increases while for much longer times the rough-
ness decreases as the pad approaches the surface z = h0. This implies that there exists
an intermediate time when the surface roughness is maximized. From (3.15), this time is
approximately

nmax ≈ 31/3

|λ| , (3.16)

see Figure 7b. This analysis suggests that there is an optimal conditioning time as with insuf-
ficient conditioning the surface is relatively smooth and planar (and therefore produces low
actual contact pressures) while for long times the surface also approaches a planar limit. We
have not attempted here to derive measures of the expected mechanical polishing rate. Further
discussion of the relevant rough surface contact mechanics can be found in [8–11].

4. A moving conditioner on a solid pad

Having gained insight into the behavior of the static conditioner, we now extend these ideas
to account for a conditioner that moves in a deterministic manner into the pad with h(tn) as a
given function. Again we consider the material at a particular height z and look at a single step
of the process. The fraction of pad material remaining at vertical position z after the (n + 1)st

step in the conditioning process, when the diamond tips are at position z = h(tn+1), is

q(z, tn+1) =
(

1 − 2

ν�

(
z − h(tn+1)

)
H(z − h(tn+1))

)
q(z, tn), (4.1)

given that the state at the previous step is described by q(z, tn). This Equation for the transition
on the (n + 1)st step can be rewritten as

q(z, tn+1) − q(z, tn)

tn+1 − tn
= − 


πν�

(
z − h(tn+1)

)
H(z − h(tn+1)) q(z, tn), (4.2)

where we have introduced tn+1 − tn = 2π/
 using (2.3). To describe the process on time
scales much larger than 1/
, we can approximate the difference quotient on the left with a
time derivative of q to yield a differential Equation for q(z, t),

∂q

∂t
= − 


πν�

(
z − h(t)

)
H(z − h(t)) q. (4.3)

This is the basic Equation that governs the changes to the distribution created by a conditioner
with triangular cutting tips. The problem is fully specified if the parameters describing the
structure of the conditioner, (
, �, ν), the motion of conditioner, h(t), and the initial structure
of the pad-surface, q(z, 0), are known. We note that, if the conditioner is fixed, that is h(t) =
h0, (4.3) yields the same exponential controlling factor as given by the analysis in the previous
section, (3.7). For general cutting tips, with shape defined by w(z), the corresponding PDE is

∂q

∂t
= − 


2π�
w(z − h(t))H(z − h(t)) q. (4.4)
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The above generalizion will be used later to compare the theory with data – see Figure 15.
Some additional insight into the behavior of the conditioner can be found by considering

the simple case where the conditioner is taken to move into the pad at a constant speed c,

h(t) = h0 − ct. (4.5)

Such a situation would occur if a constant force were applied to the conditioner and initial
transients had subsided. The density distribution would then obtain a steady shape that would
also move down at constant speed c. We now seek the structure of this steady distribution.

Adopting the moving coordinate Z with Z = z − h(t) and with Q(Z, t) = q(z, t) the
Equation becomes

∂Q

∂t
+ c

∂Q

∂Z
= − 


πν�
ZH(Z)Q. (4.6)

Neglecting initial transient behavior, this PDE reduces to an ordinary differential Equation for
the long-time steady profile traveling wave solution Q(Z),

c
dQ

dZ
= − 


πν�
ZH(Z)Q. (4.7)

We also have the condition that Q(0) = 1 to represent the fact that the pad is solid ahead of
the moving conditioner, for Z < 0. Hence we conclude that

Q(Z) = exp

(
− 


2πcν�
Z2

)
0 ≤ Z ≤ −h(t). (4.8)

Hence the CCDF is Gaussian. We then obtain the surface height density distribution from
(2.7) as

φ(z, t) =



πcν�
(z − h0 + ct)

1 − exp
(− 


2πcν�
(h0 − ct)2

) exp

(
− 


2πcν�

(
z − h0 + ct

)2
)

, (4.9)

for h0 − ct ≤ z ≤ 0. This is a linear distribution near the cutting height z = h(t), while for
z � h(t) it is nearly Gaussian. This distribution is not comparable with (3.7) since the limit
of a fixed conditioner, c → 0, is a singular limit of (4.9).

The above argument is easily extended to apply to general functions w(z) for the diamond
width. The steady state CCDF, which we simply state here, is

Q(Z) = exp

(
− 


2πc�

∫ Z

0
w(ζ ) dζ

)
. (4.10)

This generalization will be used in Section 5 to model the freshly conditioned pad PDF in
Figure 2.

We continue for the moment with triangular diamond shapes. Setting h̃0 = h0−ct , and z =
h̃0y, we can describe the distribution in terms of a dimensionless parameter, �, representing
the ratio of the pad revolution speed 
 to the cutting speed c:

� = h̃2
0


2πcν�
. (4.11)
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Figure 8. Snapshots of the surface height PDF at equally spaced times. Results from Monte Carlo simulations are
shown by dots, the solid curves are the prediction from (4.9).

Note that � is dependent on time through h̃0 and that � → ∞ as t → ∞. Then the average
pad height is

s̄(t) = 2�h̃0

1 − e−�

∫ 0

1
y(y − 1) exp

(−�(y − 1)2
)

dy. (4.12)

This integral can be evaluated exactly to yield

s̄(t) =
(

1

1 − e−�

) (
1 −

√
π erf(

√
�)

2
√

�

)(
h0 − ct

)
, (4.13)

the asymptotics of this expression for t → ∞ yield that

s̄(t) ∼
(

h0 −
√

cν�π2

2


)
− ct t → ∞. (4.14)

That is, the mean of the surface height lags behind the cutting height h(t) by a known amount
related to the cutting speed and other conditioner parameters.

Similarly, the integral for the variance (2.9) can also be evaluated exactly to yield(
σ (t)

h0 − ct

)2

= 1

�

(
1 − e−�[1 + �]

1 − e−�

)
+

√
π

�

erf(
√

�)

1 − e−�(
e−� − 1

4

√
π

�
erf(

√
�)[1 + e−�]

)
(4.15)

and similarly using asymptotics for t → ∞, we find the limiting RMS roughness behaves as

σ 2(t) ∼ (4 − π)πcν�

2

t → ∞. (4.16)

Figures 8 and 9 compare these analytical predictions with results from Monte Carlo com-
puter simulations of the conditioning process. Figure 8 shows excellent agreement of the PDF
with (4.9) and Figure 9 shows rapid convergence to the predicted asymptotic results as time
increases.
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Figure 9. Comparison of the theory and Monte Carlo simulations for the mean value and variance of the surface
height with a moving conditioner: the mean lags behind the cutting height by a constant amount (left) and for long
time the variance approaches a constant given by (4.16) (right).

5. Conditioning of foamed pads

There are two important differences between a solid pad and a foamed pad as shown in
Figure 1. The first is that due to the presence of spherical voids, the surface of a foamed
pad is generally not a single-valued function z = s(x, tn), see Figure 10a. However, we do
not need to model the surface in its full generality. Instead, we are interested only in that part
of the full surface that can be measured by line-of-sight optical interferometry. Using this
simplification, the visible surface is single-valued but may be discontinuous where it drops
into an exposed void (Figure 10a).

The second difference is that the distribution of void sizes in the pad material adds other
length-scales into the conditioning problem. For a foamed pad, a period interval of length �

may show significant non-uniformity in the spatial properties of the pad as compared with
other randomly selected slices of length �, and these “quenched” nonuniformities will in-
fluence the statistics of the surface sample even after many cuts. We will assume that these
non-uniformities are statistically homogeneous in the sense that taken over a large number
of sample cross-sections of length �, or over a large number of experiments, their statistics
do not depend on position. In numerical experiments we need to consider the conditioning
process over a much larger sampling interval L in order to observe the universal statistics of
the surface height. For convenience, we take L = N� with N a large integer.

The Monte Carlo simulation of conditioning of foamed pads involves a discrete represent-
ation of the pad volume, rather than just its surface (as was sufficient for a solid pad). We
discretize a pad cross-section of length L and sufficient depth into a uniform Cartesian grid.
For each cell in the grid, the simulation will keep track of whether the pad is solid there,
ρi,j = 1, or whether the cell is in a void, ρi,j = 0, where the indexing corresponds to the
position xi = i�x, zj = j�z. To construct the simulated foamed pad (see Figure 10b), we
start from a solid pad, with ρi,j = 1 at each cell. Void center locations and void radii are then
generated one at a time from a statistical model and ρi,j is set to 0 at cells that lie inside a void.
Figure 10b shows a small section of a simulated foamed pad that has been generated by this
process. The full simulation has length L = 200� and contains over 100, 000 disjoint circular
voids.

The pad-surface z = s(xi , tn) is found by scanning each column of ρi,j from the top down
until the first occurrence of a ρ = 1, that is,

s(xi) ≡ max
j

{zj |ρi,j = 1}. (5.1)



14 L.J. Borucki et al.

Figure 10. (left) The line-of-sight surface (heavy curve) on a foamed pad may be discontinuous. (right) A small
section of a simulated 20,000 micron wide foamed pad model.

Figure 11. Intrinsic PDF (circles) of the line-of-sight surface of the foamed pad model in Fig. 10b. The solid
curve is the best least squares fit for z < 0 to the Monte Carlo simulation surface data with the function
�(z) = 1/(a0 + a2z2) + a3δ(z). (The delta function at z = 0 is not shown in the PDF.)

The conditioning process is then done using a moving array of N equally-spaced cutting tips
with a randomly generated shift Xn, as before (see Figure 12a). Pad material is removed by
zeroing ρi,j in all cells above the cutting surface, that is

ρi,j (tn+1) =
{

ρi,j (tn) if zj < C(xi, tn),
0 if zj ≥ C(xi, tn),

(5.2)

where the conditioner cutting surface is

C(x, tn) = h(tn) +
N∑

k=1

V (k� − Xn). (5.3)

Now consider the statistics of the surface of a foamed pad prior to cutting. When a large
sample of pad is sliced open with a planar cut, the exposed surface has some “intrinsic” or
natural surface height CCDF Q(z). For the case of a solid pad, Q(z) is just the Heaviside
function H(−z), but for a foam, Q(z) is determined by the density of voids, the distribution
of void sizes and the fraction of the pad that lies exactly on the cut plane. We consider only
foamed pads that are statistically homogeneous in the sense that the intrinsic CCDF is inde-
pendent of the location and orientation of the cut. While it should sometimes be possible to
derive an analytic model for Q(z) from the method used to construct the voids, we will instead
approximate Q(z) using a numerical fit to Monte Carlo data (Figure 11).

To understand what is happening for conditioning of a foamed pad, imagine that a solid
pad is simultaneously being cut in an identical manner as shown in Figure 12a. Let the surface
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Figure 12. (left) The section of the pad model in Figure 10b after 1000 conditioning passes. Also shown (dashed
curve) is the corresponding surface of a solid pad that has received an identical treatment. The CCDF for the
foamed pad can be derived from that of the solid pad and the intrinsic CCDF Q(z). The PDF of the solid pad
provides information about the density of points near height ζ on the dashed curve while the intrinsic CCDF of
the foamed pad determines the probability of finding points on the foamed surface between ζ and z. (right) Monte
Carlo (circles) and analytic (solid) PDFs of the pad model in Figure 12. Also shown (dashed) is the analytic PDF
for the identically conditioned solid pad. The transition at about z = −5 µm marks the depth of the conditioner
tips.

of the foamed pad be sf (x, t) (f for “foamed”) and that of the virtual solid pad be s(x, t).
Then for any fixed x, we can write sf (x, t) = s(x, t) + U , where U is the (negative) vertical
displacement of the void lying immediately below the virtual solid pad-surface. According
to our void model assumptions, U is a random variable which is independent of s(x, t) and
has Q(z) as its CCDF. Consequently, the CCDF qf (z, t) for the conditioned foamed surface
height is just given by the convolution of the CCDF q(z, t) for the virtual solid pad-surface
height and the probability density �(z) = −dQ/dz for the intrinsic surface height of the
foamed pad [12, pp. 143–148]:

qf (z, t) =
∫ 0

z

q(ζ, t)�(z − ζ ) dζ, (5.4)

As an example, suppose that the surface of the virtual solid pad moves from z = 0 to z = h

by any process, such as wear, constant height conditioning or slicing. Then the steady-state
CCDF for the solid pad is H(h − z) and

qf (z) =
∫ 0

z

H(h − ζ )�(z − ζ ) dζ =
∫ h

z

�(z − ζ ) dζ = Q(z − h). (5.5)

Thus, the final foamed pad CCDF is just a translation of the initial CCDF.
In Figure 12b we compare the Monte Carlo PDF for the pad in Figure 12a after 1000

passes with the analytic model obtained from the above convolution. The parameters for the
conditioner cutting tips and the cutting speed are the same as in the previous comparisons.

In Figure 13, we show the best fit to the newly conditioned foam pad data in Figure
2a that can be obtained from Equation (5.4) using an intrinsic PDF of the form �(z) =
a0 exp(a1z)H(−z)+a2δ(z), the general steady-state solid pad model for a moving conditioner
(4.10) and a power law w(z) = b0z

b1 for the diamond shape. The optimal � is also shown. The
strength a2 ≈ 0·4 of the delta function in � was taken to correspond to the fraction of non-
void area in a planar cross-section of a pad sample. For any value of a1, a0 was then chosen to
make the function integrate to 1. This intrinsic PDF therefore has one free parameter. Values
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Figure 13. Left: Best fit of Equation (5.4) to the newly conditioned pad data in Figure 2a using an exponential
intrinsic PDF with a delta function at z = 0 and a power law diamond shape. Right: Optimized intrinsic PDF and
a measured PDF from a highly worn pad from [1].

for the diamond density and the conditioner and pad radii were estimated or taken from [1].
These imply an equivalent bar conditioner diamond spacing of � = 16µm. While not all of
the model parameters can be determined from the data in [1], the shape exponent b1 and the
composite parameter a = (
/�)(b0/c) can be uniquely extracted. Given the rotation rate

 and an estimate of the diamond width w0 at the matrix from [1], it is then possible to
relate the cut rate c to the diamond protrusion d via d = (w0/b0)

1/b1 = (w0(
/�)/(ca))1/b1.
A protrusion of about 400 µm above a 200 µm diameter base in the matrix is predicted to
correspond to a cut rate of about 10 µm per minute, consistent with the characterization in [1]
that the conditioner that produced Figure 2 has a high cut rate.

6. Simultaneous conditioning and wear

Having derived a model for the conditioner acting on the pad by itself, we now consider how
to extend the model to account for wear created during wafer polishing. This is the in situ case.
First, we rewrite the wear equation (A4) from appendix 7 in terms of the CCDF rather than the
PDF. In the context of the simplified conditioning model used in the previous sections, we then
present a combined PDE that describes both processes in the case of a moving conditioner and
a solid pad and we find a traveling wave solution. Finally, we discuss a wear and conditioning
model for foamed pads.

6.1. SOLID PADS

To begin, we note that Equation (A4) (and equivalently (1.1)) version (A.4) in the appendix)
is easily integrated with respect to z to cast it in terms of the CCDF q. Assuming that φ(z, t)

decays quickly enough as z → ∞ so that
√

z − h(t) φ(z, t) → 0 at any time t , we obtain

∂q

∂t
= W(r)H(z − d)

√
z − d

∂q

∂z
, (6.1)

where the function W(r) is described in Appendix A. This Equation describes wear for solid
pads for all times t .

To combine conditioning and wear, we observe that when the bar conditioner is used,
these two processes are both linear in q and occur sequentially on each rotation (Figure 17).
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The combined effect on q over an integral number of periods can therefore be modeled by
adding the right-hand sides of Equations (4.3) and (6.1). To simplify notation, we define a
“conditioning function” as

C = 


πν�
(z − h)H(z − h), (6.2)

and a “wear function” as

W = W(r)
√

z − d H(z − d). (6.3)

The basic PDE for the combined wear and conditioning model for a moving bar conditioner
is then

∂q

∂t
= −Cq + W

∂q

∂z
. (6.4)

We expect this Equation to approximate the actual discrete sequential processes well on time
scales that are much larger than a half-sweep of the conditioner.

To gain more insight into the behavior of the combined model, we again examine the steady
solution for a constant cutting speed c. Let Z = z − h(t) and Q(Z, t) = q(z, t) as before and
denoting the difference between the wafer and conditioner depths by D(t) = d(t) − h(t),
Equation (6.4) becomes

∂Q

∂t
− dh

dt

∂Q

∂Z
= − 


πν�
ZH(Z)Q + WH(Z − D)

√
Z − D

∂Q

∂Z
. (6.5)

In applications, D(t) > 0. At steady state, D(t) is a constant D. If h(t) = h0 − ct , then the
steady-profile traveling wave solution satisfies the linear ODE

c
dQ

dZ
= − 


πν�
ZH(Z)Q + WH(Z − D)

√
Z − D

dQ

dZ
. (6.6)

After gathering dQ/dZ terms, this ODE is easily solved. When 0 < Z < D, the solution is
the Gaussian function obtained earlier for steady conditioning of a solid pad at constant speed
since there is no wear below Z = D. Hence,

Q(Z) = exp

(
− 


2πcν�
Z2

)
0 < Z < D (6.7)

while for the remainder of the region there is wear and

Q(Z) = exp

(
− 


2πcν�
D2

)
exp

(
− 


πν�

∫ Z

D

ζ dζ

c − W
√

ζ − D

)
Z > D. (6.8)

The steady state solution given by Equations (6.7) and (6.8) can be seen to meet the neces-
sary continuity requirements at Z = D and the boundary condition Q = 1 at Z = 0 that
corresponds to having only solid pad below the cutting tips. Example solutions are shown in
Figure 14.

The structure of the tail of the PDF is affected by wear and can be determined by examining
Equation (6.8). It can easily be seen that the integrand in Equation (6.8) has a singularity at
ζ = D + (c/W)2. As the singularity is approached from the left, Q(Z) approaches zero. This
implies that the relevant part of the solution lies entirely to the left of the singularity. The wear
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Figure 14. PDFs φ = −dQ/dz (solid curves) produced by the solid pad steady state conditioning and wear model
for various values of the wear parameter W (in units of

√
µm/min). The separation between the cutting tips and

the wafer surface is 2 µm. Monte Carlo results (circles and squares) are shown for comparison.

function W can be varied by changing Ca (using a different slurry) or E∗ (using a different
pad material). We find that the PDF may fail to have a secondary peak if W is sufficiently
small, that it has a single interior peak between D and the singularity for larger W , and that
above some threshold it increases monotonically between D and the singularity. Numerical
results are shown in Figure 14 as a function of the choice of wear parameter W for a wear-time
ratio of η = 0·2124 at equal pad and wafer rotation rates. The numerical solutions are also
compared with Monte Carlo simulations, which are discrete and incorporate asperity wear
directly in the form of Archard’s law, as described in [2]. The wear parameter is larger than
would be realistic during actual in situ polishing in order to clearly show the secondary wear
peak.

6.2. FOAMED PADS

Wear and conditioning of a foamed pad can be modeled by combining the governing PDE
(6.4) for a virtual solid pad with the basic convolution (5.4) for the foamed pad CCDF,

qf (z, t) =
∫ 0

z

q(ζ, t)�(z − ζ ) dζ. (6.9)

An initial condition is required for q; for a cleanly sliced pad, it is q(z, 0) = H(−z). More
generally, a Laplace transform can be applied to Equation (6.9) to obtain an initial q from any
given initial qf .

At first glance, the structural information contained in � would appear to play no role in
the time evolution of a foamed pad CCDF; i.e., Equation (6.4) for q could be integrated to
the desired time without reference to � after which a single application of Equation (6.9)
would provide qf . This is correct if h(t) and d(t) are externally imposed. However, in a real
CMP tool, these quantities are always a result of load balancing involving feedback from the
structure of qf . In the theory of surface contact given by Greenwood and Williamson [9], the
contact pressure at pad radius r within the wafer bounds is

P(r, t) = −4ηsE
∗

3
√

κs

∫ ∞

d(t)

(ζ − d(t))3/2 ∂qf (r, ζ, t)

∂ζ
dζ, (6.10)
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Figure 15. Left: Hypothetical evolution of an exponential intrinsic PDF with a delta-distribution surface compon-
ent into the freshly conditioned pad data [1] in Figure 2a. Snapshots are shown at one minute time intervals. Right:
Comparison of the subsequent wear of the surface height distribution on the left in the absence of conditioning
(solid curve) with the data in Figure 2b.

where the radial dependence of qf has been shown explicitly. Load balance is imposed by
integrating Equation (6.10) over the wafer surface to get the total force and adjusting d(t) so
that the total force equals the applied load. Thus, pad structural information enters equation
(6.4) via d(t) in a load-balanced application.

As an example, we consider a foam with intrinsic PDF �(z) = a0ea1zH(−z) + a2δ(z)

as described in Section 5 and calculate the transient evolution of φ at constant cut rate that
may have led to the freshly conditioned pad data in Figure 2a. Numerical results are shown in
Figure 15a. The simulation suggests that the pad-surface reached steady state in 4–5 minutes
of conditioning.

Figure 15b shows a load-balanced simulation of the subsequent abrasive wear of the PDF
in Figure 15a into the measured PDF in Figure 2b in the absence of any further conditioning.
Two parameters, the wear function factor Ca and the mean asperity tip curvature κs (which
also affects load balance), were optimized to obtain agreement with the secondary peak in
Figure 2b. The location of the secondary peak and the shape of the tail produced by the model
agree with the data. The observable differences may be attributable to the simplicity of the
intrinsic PDF used and to factors such as platen run-out that are not included in the model.

7. Summary and conclusions

We have developed a simplified theory of conditioning and wear in chemical-mechanical
polishing. We have shown that when the conditioner rotates sufficiently slowly, a circular
conditioner that executes a constant speed radial sweep can be replaced by an equivalent bar
conditioner that has the same cumulative effect on the pad within the region where the wafer
is polished. In the context of the bar conditioner, we have then explicitly derived models for
the evolution of the surface height distribution of a solid pad during both fixed height and
fixed cut-rate conditioning. For foamed pads, we have derived a very fundamental result that
relates the foamed pad CCDF to that of an identically conditionened virtual solid pad via a
convolution involving the foamed pad intrinsic PDF. The results of all of these models agree
with the corresponding Monte Carlo simulations. For combined conditioning and wear of
solid pads we obtained a single PDE that also is in agreement with Monte Carlo simulations.
Finally, conditioning and wear of a foamed pad is modeled by combining the virtual solid pad



20 L.J. Borucki et al.

evolution Equation with the fundamental convolution that relates the solid and foamed pad
CCDFs.

A theory of conditioning and wear should be connected with a theory of wafer polishing.
The overall theory would make it possible to understand in principle the relationship between
the design and operation of the conditioner, the structure of the pad, and the measures of
polishing performance that are of final importance in the industrial applications of CMP.
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Appendix A. CMP tool operation and geometry

We describe in detail practices that are typical of the operation of a rotary CMP tool (see
Figure 1), the geometry of these tools, and the related simplifying assumptions that we will
adopt. Further information about CMP processing can be found in [6, Chapters 1,2]. The key
objectives in this section are to replace Equation (1.1) by an Equation that produces the same
change in φ after each full pad rotation without involving the details about the intermittent
applicability of Equation (1.1) and to explicitly include information about the wafer geometry
and relative sliding speed.

A.1. DESCRIPTION OF THE WEAR PROCESS

The wafer is a circular disk with radius rw that rotates with constant angular speed 
w in the
same direction as the pad (which we take here as clockwise). In practice, 
w is usually close to
the angular speed of the pad, 
, since maintaining equal speeds promotes uniform polishing.
For simplicity we may assume that the center of the wafer is fixed at position (−cw, 0) relative
to the center of the pad, with cw > rw, see Figure 16.

Within the annular ring cw − rw ≤ r ≤ cw + rw the wear on the pad is not uniform for two
reasons; (i) the sliding speed of a point on the pad relative to the wafer may depend on r, and
(ii) the physical extent of the wafer surface (and hence the relative time duration of the wear
per pad revolution) depends on r. For any fixed value of r within the ring, the relative amount
of wear per revolution is given by the angle subtended by the part of the path C passing under
the wafer at that radius divided by 2π ; we call this the wear-time ratio,

η(r) = 1

π
cos−1

(
c2
w + r2 − r2

w

2rcw

)
, |r − cw| ≤ rw. (A1)

The effective influence of η(r) is to describe the reduction in the rate of wear due to the finite-
sized wafer as compared with uniform wear over the entire annular ring. Since the fraction of
time η(r) that a small part of the pad spends under the wafer depends on the distance from the
center of the pad, a pad with an initially spatially uniform surface height PDF will evolve into
one for which the PDF is nonuniform.
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Figure 16. Top view of a CMP tool geometry. A small region of pad at the end of the vector r of length r travels
along a circular path, encountering the wafer once per period. It will also encounter the circular conditioner during
a few of the periods in each outward or inward radial conditioning sweep.

As mentioned above, the factor ca in the wear Equation is proportional to the relative
sliding speed Vs between the pad and the wafer; thus we may write ca = CaVs . During an
encounter with the wafer, the relative velocity at a point on the pad initially at (r, θ0) and
currently at (r, θ(t)) depends on both the pad and wafer rotation rates and is given by

Vs = −(
w − 
)r sin θ(t) i + [(
w − 
)r cos θ(t) + 
wcw] j (A2)

where θ(t) = θ0 − 
t . In the special case when 
w = 
, the sliding speed is Vs = 
cw, but
otherwise the speed is a function of r and t , Vs(r, t) = |Vs|. For use in the wear Equation (1.1)
we want a measure of the sliding speed that captures the radial dependence of the wear rate
after large numbers of pad revolutions while averaging out the details of the variation in rate
within each period. We note that since all points at radius r see the same sliding velocity
history, we take θ0 = 0 and use first-order averaging [7, pp. 262–270] to obtain

V̄s(r) = 


2πη(r)

∫ π(1+η(r))/


π(1−η(r))/


Vs(r, t) dt

= 
wcw + r2(
 − 
w)

cw

sin πη(r)

πη(r)
+ O

(

wcw

(
(
 − 
w)r2


wc2
w

)2
)

. (A3)

We will use V̄s(r) in (1.1) to describe the evolution of the PDF φ(z, t) with a parametric
dependence on r. This replacement of the temporally fluctuating sliding speed by its average
is reasonable provided the time scale of the fluctuations of the sliding velocity, rw/(cw
), is
much smaller than the time scale over which the surface height of the pad evolves. In practice,
the ratio of these time scales does not exceed 1/40.

We now combine the above considerations to obtain a version of Equation (1.1) that ap-
plies over the entire pad rotational period, not just during the periods of wafer contact. By
considering the change in φ on a timescale comparable with a pad rotation, we can use the
wear-time ratio η(r) to write Equation (1.1) for the effective wear per pad rotation,

∂φ

∂t
= W(r)

∂

∂z

(
H(z − d(t))

√
z − d(t) φ

)
, (A4)
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where, for brevity of notation, we have defined a “wear function”,

W(r) = η(r)CaV̄s(r)
4E∗√κs

3π
(A5)

(In the MKS system, W has units of m1/2/sec). Because at a given radius r, the relation
between the elapsed time t and the wear time τ is t = τ/η(r), (A4) produces the same change
in φ over any integral number of pad rotations as Equation (1.1) without explicitly resolving
the intermittency of the wear process.

A.2. DESCRIPTION OF THE CONDITIONING PROCESS

Like the wafer, the conditioner is a rotating disk pressed onto the pad-surface. The condi-
tioning disk has a much smaller radius rc and is periodically swept over a fixed radial track.
We will assume that the conditioning sweep occurs along the positive x-axis with constant
translational speed vc and constant rotational speed 
c between x = rc and x = rp −rc, where
rp is the pad radius (Figure 16). As the conditioner traverses the track, it gradually removes pad
material. In a real tool, the translational speed of the conditioner is often controlled so that the
removal is as uniform as possible over the conditioning track. That is, the local mean surface
height is close to constant across the pad and during the conditioning process it decreases at a
constant rate c, called the cut rate. While variable sweep speeds can be incorporated into our
approach, the essential features are illustrated at constant speed.

Unlike the wafer, the points and sharp edges on the diamonds on the conditioner face cut
the pad rather than abrading it. The essential difference is that abrasion is a gradual process
in which the removal rate depends on the applied load, the contact time and the geometry of
the abraded surface (i.e., asperity heights) as in Equation (A4) while in cutting the amount of
material removed depends strongly on the shape of the cutting object. Thus, equation (A4)
cannot be used to describe conditioning.

In the next section, we consider the influence of some of the conditioner parameters and
construct an equivalent conditioning tool with a simplified geometry.

Appendix B. Simplification of the conditioner

For the purpose of studying CMP, it is not necessary to resolve all of the fine-scale de-
tails of the conditioning process, so long as their cumulative net effects can be understood.
Consequently, we find that the average effect of the actual circular conditioning tool can be
modeled by a very much simplified equivalent tool.

Conditioning disks are usually 0·025–0·05 m in radius and are covered with diamond cut-
ting tips that some manufacturers distribute randomly and uniformly over the disk. Selected
according to their size, shape and other qualities, the diamonds are embedded in a tough
matrix from which they may have a carefully controlled protrusion. When the diamonds are
uniformly distributed, the density of grooves or furrows cut into the pad is independent of the
sliding direction of the disk. Furthermore, when the conditioner and pad rotate in the same
direction and the rotation rate of the conditioner is sufficiently slow relative to that of the
pad, each diamond cuts a non self-intersecting furrow during each pad rotational period. This
happens when the conditioner and pad rotate at the same rate, for example. Under the assump-
tions of uniformity and slow rotation, the density of furrows is independent of the conditioner
rotation rate, so we may analyze the density using a non-rotating disk. Furthermore, if the
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Figure 17. (left) Comparison of the furrow density as a function of pad radius r from a direct simulation of
groving by a rotating conditioner with uniformly distributed diamonds with the analytic approximation (dashed
line) derived in the paper. (right) For the model of in situ conditioning, the circular conditioner is replaced by the
equivalent bar conditioner. A small portion at r of a radial cross-section encounters both the wafer and conditioner
once per period.

sweep speed is sufficiently slow relative to 
c, then the shape of the cut that each diamond
makes across a fixed radial line on the pad will be close to that of the diamond.

With these assumptions, we can estimate the average density of furrows cut in an annulus
between r and r +�r, where r and r +�r are both between 2rc and rp −2rc. At any constant
sweep speed, all of the diamonds on the conditioner eventually pass through this annulus
during a half-sweep. If �r is chosen so that �r = 2πvc/
, then each diamond will make
exactly one new cut through any radial cross-section of the annulus with angular label θ0. The
total number of cuts by the end of a half-sweep will therefore be the total number of diamonds
on the disk, ND = ρDπr2

c , for this particular annulus and for any θ0, where ρD is the density
of diamonds on the disk face. The average density of new cuts in the annulus (the number per
unit length of a radial cross-section) is then ND/�r by the end of the sweep.

We further simplify the conditioning model by distributing the new cuts in the annulus
evenly between the pad rotations comprising the half-sweep. Since the time for the half-sweep
is (rp − 2rc)/vc or

Ns = (rp − 2rc)/vc

2π/

= (rp − 2rc)/�r (B1)

rotational periods, the average density of new cuts introduced per rotation is

ND/�r

Ns

= ND/�r

(rp − 2rc)/�r
= ND

rp − 2rc

. (B2)

The average spacing between new cuts per rotation is consequently

� = rp − 2rc

ρDπr2
c

. (B3)

The average spacing of new cuts per turn depends on the total number of diamonds on the
disk and the length of the half-sweep but not on r or on the sweep speed vc as long as the
latter is sufficiently slow. As seen in Figure 17, which compares this approximation with a
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direct simulation of grooving during a half-sweep, the estimate is very good between r = 2rc

and r = rp − 2rc. These are the approximate limits within which the wafer is polished. In the
simulation, the tracks on the pad of a large number of uniformly distributed diamonds were
explicitly calculated over the half-sweep using a rotating conditioner.

The above formula informs us that the circular conditioner may be simplified by remount-
ing the ρDπr2

c diamonds on its face in a line on a bar-shaped tool of length rp − 2rc. The
diamonds on this bar, sometimes referred to here as the equivalent or idealized linear con-
ditioner, are arranged with a mean spacing of � and each execute independent random radial
displacements as the pad turns. On successive rotations of the pad, a fixed radial cross-section
will then then encounter the bar conditioner with the diamonds at a uniformly distributed
random displacements. The bar conditioner is equivalent to the circular conditioner in the
sense that by the end of one half-sweep, it produces the same density of new cuts between
2rc and rp − 2rc as the circular conditioner produces. However, the equivalent conditioner
operates on a sample of the pad at radius r at every turn of the pad rather than for just for a
fraction of the half-sweep (Figure 17).
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